On the three critical points theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three Critical Points Theorem and Its Applications to the Ordinary Dirichlet Problem

The aim of this paper is twofold. On one hand we establish a three critical points theorem for functionals depending on a real parameter λ ∈ Λ, which is different from the one proved by B. Ricceri in [15] and gives an estimate of where Λ can be located. On the other hand, as an application of the previous result, we prove an existence theorem of three classical solutions for a two-point boundar...

متن کامل

Critical Points for Surface Maps and the Benedicks-carleson Theorem

We give an alternative proof of the Benedicks-Carleson theorem on the existence of strange attractors in Hénon-like maps in the plane. To bypass a huge inductive argument, we introduce an induction-free explicit definition of dynamically critical points. The argument is sufficiently general and in particular applies to the case of non-invertible maps as well. It naturally raises the question of...

متن کامل

A non-smooth three critical points theorem with applications in differential inclusions

We extend a recent result of Ricceri concerning the existence of three critical points of certain non-smooth functionals. Two applications are given, both in the theory of differential inclusions; the first one concerns a non-homogeneous Neumann boundary value problem, the second one treats a quasilinear elliptic inclusion problem in the whole RN .

متن کامل

Existence of Three Solutions for a Nonlinear Fractional Boundary Value Problem via a Critical Points Theorem

and Applied Analysis 3 ii If γ n − 1 and f ∈ ACn−1 a, b ,R , then CaD t f t and t Dn−1 b f t are represented by C aD n−1 t f t f n−1 t , t D n−1 b f t −1 n−1 f n−1 t , t ∈ a, b . 2.3 With these definitions, we have the rule for fractional integration by parts, and the composition of the Riemann-Liouville fractional integration operator with the Caputo fractional differentiation operator, which ...

متن کامل

Positive Solutions for Semipositone Discrete Eigenvalue Problems via Three Critical Points Theorem

In this paper, multiple positive solutions for semipositone discrete eigenvalue problems are obtained by using a three critical points theorem for nondifferentiable functional. Keywords—Discrete eigenvalue problems, positive solutions, semipositone, three critical points theorem

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topological Methods in Nonlinear Analysis

سال: 1998

ISSN: 1230-3429

DOI: 10.12775/tmna.1998.006